Documentation

Iris.ProofMode.Tactics.Pure

theorem Iris.ProofMode.pure_elim_spatial {PROP : Type u_1} [BI PROP] {P P' A Q : PROP} {φ : Prop} [hA : IntoPure A φ] [or : Std.TCOr (BI.Affine A) (BI.Absorbing Q)] (h : P ⊣⊢ P' A) (h_entails : φP' Q) :
P Q
theorem Iris.ProofMode.pure_elim_intuitionistic {PROP : Type u_1} [BI PROP] {P P' A Q : PROP} {φ : Prop} [IntoPure A φ] (h : P ⊣⊢ P' A) (h' : φP' Q) :
P Q
def Iris.ProofMode.ipureCore {u : Lean.Level} {α : Type} {prop : Q(Type u)} (_bi : Q(BI «$prop»)) (P P' A Q : Q(«$prop»)) (name : Lean.TSyntax `Lean.binderIdent) (pf : Q(«$P» ⊣⊢ «$P'» «$A»)) (k : (φ : Q(Prop)) → Q(«$φ»)Lean.MetaM (α × Q(«$P'» «$Q»))) :
Lean.MetaM (α × Q(«$P» «$Q»))
Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      theorem Iris.ProofMode.pure_intro_affine {PROP : Type u_1} {P : PROP} [BI PROP] {Q : PROP} {φ : Prop} [h : FromPure true Q φ] [BI.Affine P] ( : φ) :
      P Q
      theorem Iris.ProofMode.pure_intro_spatial {PROP : Type u_1} {P : PROP} [BI PROP] {Q : PROP} {φ : Prop} [h : FromPure false Q φ] ( : φ) :
      P Q