Documentation

Iris.ProofMode.Tactics.Intro

theorem Iris.ProofMode.imp_intro_drop {PROP : Type u_1} [BI PROP] {P Q A1 A2 : PROP} [inst : FromImp Q A1 A2] (h : P A2) :
P Q
theorem Iris.ProofMode.from_forall_intro {PROP : Type u_1} {α : Sort u_2} [BI PROP] {P Q : PROP} {Φ : αPROP} [inst : FromForall Q Φ] (h : ∀ (a : α), P Φ a) :
P Q
theorem Iris.ProofMode.imp_intro_intuitionistic {PROP : Type u_1} [BI PROP] {P Q A1 A2 B : PROP} [FromImp Q A1 A2] [inst : IntoPersistently false A1 B] (h : P B A2) :
P Q
theorem Iris.ProofMode.wand_intro_intuitionistic {PROP : Type u_1} [BI PROP] {P Q A1 A2 B : PROP} [FromWand Q A1 A2] [inst : IntoPersistently false A1 B] [or : Std.TCOr (BI.Affine A1) (BI.Absorbing A2)] (h : P B A2) :
P Q
theorem Iris.ProofMode.imp_intro_spatial {PROP : Type u_1} [BI PROP] {P Q A1 A2 B : PROP} [FromImp Q A1 A2] [inst : FromAffinely B A1] [or : Std.TCOr (BI.Persistent A1) (BI.Intuitionistic P)] (h : P B A2) :
P Q
theorem Iris.ProofMode.wand_intro_spatial {PROP : Type u_1} [BI PROP] {P Q A1 A2 : PROP} [FromWand Q A1 A2] (h : P A1 A2) :
P Q
partial def Iris.ProofMode.iIntroCore {u : Lean.Level} {prop : Q(Type u)} (bi : Q(BI «$prop»)) {P : Q(«$prop»)} (hyps : Hyps bi P) (Q : Q(«$prop»)) (pats : List iCasesPat) (k : {P : Q(«$prop»)} → Hyps bi P(Q : Q(«$prop»)) → Lean.MetaM Q(«$P» «$Q»)) :
Lean.MetaM Q(«$P» «$Q»)
Equations
  • One or more equations did not get rendered due to their size.
Instances For