Documentation

Iris.BI.Plainly

class Iris.Plainly (PROP : Type u_1) :
Type u_1
  • plainly : PROPPROP
Instances
    def Iris.Plainly.plainlyIf {PROP : Type u_1} [BI.BIBase PROP] [Plainly PROP] (p : Bool) (P : PROP) :
    PROP
    Equations
    Instances For
      Equations
      • One or more equations did not get rendered due to their size.
      Instances For
        class Iris.BIPlainly (PROP : Type u_1) [BI PROP] extends Iris.Plainly PROP :
        Type u_1
        Instances
          class Iris.BIPersistentlyImplPlainly (PROP : Type u_1) [BI PROP] [BIPlainly PROP] :
          Instances
            class Iris.BIPlainlyExists (PROP : Type u_1) [BI PROP] [BIPlainly PROP] :
            Instances
              class Iris.BI.Plain {PROP : Type u_1} [BI PROP] [Plainly PROP] [BIPlainly PROP] (P : PROP) :
              Instances
                instance Iris.BI.instPlainPlainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] (P : PROP) :
                theorem Iris.BI.affinely_plainly_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.persistently_elim_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.plainly_forall_2 {PROP : Type u_2} [BI PROP] [BIPlainly PROP] {α : Sort u_1} {Ψ : αPROP} :
                («forall» fun (a : α) => iprop( Ψ a)) «forall» fun (a : α) => Ψ a
                theorem Iris.BI.plainly_persistently_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.absorbingly_elim_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.plainly_and_sep_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                P Q (emp P) Q
                theorem Iris.BI.plainly_and_sep_assoc {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q R : PROP} :
                P Q R ⊣⊢ ( P Q) R
                theorem Iris.BI.plainly_and_emp_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                emp P P
                theorem Iris.BI.plainly_into_absorbingly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.plainly_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} [Absorbing P] :
                P P
                theorem Iris.BI.plainly_idemp {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.plainly_intro' {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} (H : P Q) :
                P Q
                theorem Iris.BI.plainly_pure {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {φ : Prop} :
                theorem Iris.BI.plainly_forall {PROP : Type u_2} [BI PROP] [BIPlainly PROP] {α : Sort u_1} {Ψ : αPROP} :
                ( «forall» fun (a : α) => Ψ a) ⊣⊢ «forall» fun (a : α) => iprop( Ψ a)
                theorem Iris.BI.plainly_exists_2 {PROP : Type u_2} [BI PROP] [BIPlainly PROP] {α : Sort u_1} {Ψ : αPROP} :
                («exists» fun (a : α) => iprop( Ψ a)) «exists» fun (a : α) => Ψ a
                theorem Iris.BI.plainly_exists_1 {PROP : Type u_2} [BI PROP] [BIPlainly PROP] {α : Sort u_1} [BIPlainlyExists PROP] {Ψ : αPROP} :
                ( «exists» fun (a : α) => Ψ a) «exists» fun (a : α) => iprop( Ψ a)
                theorem Iris.BI.plainly_exists {PROP : Type u_2} [BI PROP] [BIPlainly PROP] {α : Sort u_1} [BIPlainlyExists PROP] {Ψ : αPROP} :
                ( «exists» fun (a : α) => Ψ a) ⊣⊢ «exists» fun (a : α) => iprop( Ψ a)
                theorem Iris.BI.plainly_and {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                (P Q) ⊣⊢ P Q
                theorem Iris.BI.plainly_or_2 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                P Q (P Q)
                theorem Iris.BI.plainly_or {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIPlainlyExists PROP] :
                (P Q) ⊣⊢ P Q
                theorem Iris.BI.plainly_impl {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                theorem Iris.BI.plainly_emp_2 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] :
                emp
                theorem Iris.BI.plainly_sep_dup {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.plainly_and_sep_l_1 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                P Q P Q
                theorem Iris.BI.plainly_and_sep_r_1 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                P Q P Q
                theorem Iris.BI.plainly_true_emp {PROP : Type u_1} [BI PROP] [BIPlainly PROP] :
                True ⊣⊢ emp
                theorem Iris.BI.plainly_and_sep {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                (P Q) (P Q)
                theorem Iris.BI.plainly_affinely_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.intuitionistically_plainly_elim {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.intuitionistically_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P : PROP} :
                theorem Iris.BI.and_sep_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                theorem Iris.BI.plainly_sep_2 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                P Q (P Q)
                theorem Iris.BI.plainly_sep {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIPositive PROP] :
                (P Q) ⊣⊢ P Q
                theorem Iris.BI.plainly_wand {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                (P -∗ Q) P -∗ Q
                theorem Iris.BI.plainly_entails_l {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} (H : P Q) :
                P Q P
                theorem Iris.BI.plainly_entails_r {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} (H : P Q) :
                P P Q
                theorem Iris.BI.plainly_impl_wand_2 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                theorem Iris.BI.impl_wand_plainly_2 {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                ( P -∗ Q) PQ
                theorem Iris.BI.impl_wand_affinely_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                ( PQ) ⊣⊢ (<affine> P -∗ Q)
                theorem Iris.BI.plainly_wand_affinely_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} :
                theorem Iris.BI.plainly_emp {PROP : Type u_1} [BI PROP] [BIPlainly PROP] [BIAffine PROP] :
                emp ⊣⊢ emp
                theorem Iris.BI.plainly_and_sep_l {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIAffine PROP] :
                P Q ⊣⊢ P Q
                theorem Iris.BI.plainly_and_sep_r {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIAffine PROP] :
                P Q ⊣⊢ P Q
                theorem Iris.BI.plainly_impl_wand {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIAffine PROP] :
                theorem Iris.BI.impl_wand_plainly {PROP : Type u_1} [BI PROP] [BIPlainly PROP] {P Q : PROP} [BIAffine PROP] :
                ( PQ) ⊣⊢ ( P -∗ Q)