Documentation

Iris.Algebra.COFESolver

def Iris.COFE.OFunctor.Fix.Impl.A' (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] :
Nat(α : Type u) × COFE α
Equations
Instances For
    def Iris.COFE.OFunctor.Fix.Impl.A (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] (n : Nat) :
    Equations
    Instances For
      instance Iris.COFE.OFunctor.Fix.Impl.instA' {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] (n : Nat) :
      COFE (A' F n).fst
      Equations
      instance Iris.COFE.OFunctor.Fix.Impl.instA {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] (n : Nat) :
      COFE (A F n)
      Equations
      def Iris.COFE.OFunctor.Fix.Impl.up (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (k : Nat) :
      A F k -n> A F (k + 1)
      Equations
      Instances For
        def Iris.COFE.OFunctor.Fix.Impl.down (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (k : Nat) :
        A F (k + 1) -n> A F k
        Equations
        Instances For
          theorem Iris.COFE.OFunctor.Fix.Impl.down_up {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (x : A F k) :
          OFE.Equiv ((down F k).f ((up F k).f x)) x
          theorem Iris.COFE.OFunctor.Fix.Impl.up_down {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (x : A F (k + 1 + 1)) :
          OFE.Dist k ((up F (k + 1)).f ((down F (k + 1)).f x)) x
          structure Iris.COFE.OFunctor.Fix.Impl.Tower (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
          Instances For
            theorem Iris.COFE.OFunctor.Fix.Impl.Tower.ext {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} {inst✝ : OFunctorContractive F} {inst✝¹ : (α : Type u) → [inst : COFE α] → IsCOFE (F α α)} {inh : Inhabited (F (ULift Unit) (ULift Unit))} {x y : Tower F} (val : x.val = y.val) :
            x = y
            theorem Iris.COFE.OFunctor.Fix.Impl.Tower.ext_iff {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} {inst✝ : OFunctorContractive F} {inst✝¹ : (α : Type u) → [inst : COFE α] → IsCOFE (F α α)} {inh : Inhabited (F (ULift Unit) (ULift Unit))} {x y : Tower F} :
            x = y x.val = y.val
            instance Iris.COFE.OFunctor.Fix.Impl.instCoeFunTowerForallA {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
            CoeFun (Tower F) fun (x : Tower F) => (k : Nat) → A F k
            Equations
            instance Iris.COFE.OFunctor.Fix.Impl.instOFETower {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
            Equations
            • One or more equations did not get rendered due to their size.
            def Iris.COFE.OFunctor.Fix.Impl.towerChain {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (c : Chain (Tower F)) (k : Nat) :
            Chain (A F k)
            Equations
            Instances For
              instance Iris.COFE.OFunctor.Fix.Impl.instTower {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
              Equations
              • One or more equations did not get rendered due to their size.
              def Iris.COFE.OFunctor.Fix.Impl.upN (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (n : Nat) :
              A F k -n> A F (k + n)
              Equations
              Instances For
                def Iris.COFE.OFunctor.Fix.Impl.downN (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (n : Nat) :
                A F (k + n) -n> A F k
                Equations
                Instances For
                  theorem Iris.COFE.OFunctor.Fix.Impl.downN_upN {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (x : A F k) {i : Nat} :
                  OFE.Equiv ((downN F i).f ((upN F i).f x)) x
                  theorem Iris.COFE.OFunctor.Fix.Impl.Tower.up {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (X : Tower F) :
                  OFE.Dist k ((up F (k + 1)).f (X.val (k + 1))) (X.val (k + 2))
                  theorem Iris.COFE.OFunctor.Fix.Impl.Tower.upN {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (X : Tower F) (i : Nat) :
                  OFE.Dist k ((upN F i).f (X.val (k + 1))) (X.val (k + 1 + i))
                  theorem Iris.COFE.OFunctor.Fix.Impl.Tower.downN {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (X : Tower F) (i : Nat) :
                  OFE.Equiv ((downN F i).f (X.val (k + i))) (X.val k)
                  instance Iris.COFE.OFunctor.Fix.Impl.instNonExpansiveTowerAVal {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (k : Nat) :
                  OFE.NonExpansive fun (X : Tower F) => X.val k
                  def Iris.COFE.OFunctor.Fix.Impl.Tower.proj {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (k : Nat) :
                  Tower F -n> A F k
                  Equations
                  Instances For
                    def Iris.COFE.OFunctor.Fix.Impl.eqToHom {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] {i k : Nat} (e : i = k) :
                    A F i -n> A F k
                    Equations
                    Instances For
                      theorem Iris.COFE.OFunctor.Fix.Impl.eqToHom_up {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k k' : Nat} {x : A F k} (e : k = k') :
                      (eqToHom ).f ((up F k).f x) = (up F k').f ((eqToHom e).f x)
                      theorem Iris.COFE.OFunctor.Fix.Impl.down_eqToHom {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k k' : Nat} {x : A F (k + 1)} (e : k = k') :
                      (down F k').f ((eqToHom ).f x) = (eqToHom e).f ((down F k).f x)
                      def Iris.COFE.OFunctor.Fix.Impl.embed {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k i : Nat} :
                      A F k -n> A F i
                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        def Iris.COFE.OFunctor.Fix.Impl.Tower.embed {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (k : Nat) :
                        A F k -n> Tower F
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          theorem Iris.COFE.OFunctor.Fix.Impl.Tower.embed_up {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (x : A F k) :
                          OFE.Equiv ((Tower.embed (k + 1)).f ((up F k).f x)) ((Tower.embed k).f x)
                          theorem Iris.COFE.OFunctor.Fix.Impl.Tower.embed_self {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] {k : Nat} (X : Tower F) :
                          OFE.Dist k ((Tower.embed (k + 1)).f (X.val (k + 1))) X
                          instance Iris.COFE.OFunctor.Fix.Impl.instInhabitedTower {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                          Equations
                          def Iris.COFE.OFunctor.Fix.Impl.unfoldChain {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (X : Tower F) :
                          Chain (F (Tower F) (Tower F))
                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            def Iris.COFE.OFunctor.Fix.Impl.Tower.iso {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                            OFE.Iso (F (Tower F) (Tower F)) (Tower F)
                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[irreducible]
                              def Iris.COFE.OFunctor.Fix (F : (α β : Type u) → [OFE α] → [OFE β] → Type u) [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                              Equations
                              Instances For
                                instance Iris.COFE.OFunctor.instInhabitedFix {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                                Equations
                                instance Iris.COFE.OFunctor.instFix {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                                COFE (Fix F)
                                Equations
                                @[irreducible]
                                def Iris.COFE.OFunctor.Fix.iso {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                                OFE.Iso (F (Fix F) (Fix F)) (Fix F)
                                Equations
                                Instances For
                                  @[irreducible]
                                  def Iris.COFE.OFunctor.Fix.fold {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                                  F (Fix F) (Fix F) -n> Fix F
                                  Equations
                                  Instances For
                                    @[irreducible]
                                    def Iris.COFE.OFunctor.Fix.unfold {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] :
                                    Fix F -n> F (Fix F) (Fix F)
                                    Equations
                                    Instances For
                                      theorem Iris.COFE.OFunctor.Fix.fold_unfold {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (X : Fix F) :
                                      theorem Iris.COFE.OFunctor.Fix.unfold_fold {F : (α β : Type u) → [OFE α] → [OFE β] → Type u} [OFunctorContractive F] [(α : Type u) → [inst : COFE α] → IsCOFE (F α α)] [inh : Inhabited (F (ULift Unit) (ULift Unit))] (X : F (Fix F) (Fix F)) :