Documentation

Iris.Algebra.Agree

structure Iris.Agree (α : Type u) :
Instances For
    theorem Iris.Agree.ext_iff {α : Type u} {x y : Agree α} :
    x = y x.car = y.car
    theorem Iris.Agree.ext {α : Type u} {x y : Agree α} (car : x.car = y.car) :
    x = y
    def Iris.toAgree {α : Type u} (a : α) :
    Equations
    Instances For
      theorem Iris.mem_of_agree {α : Type u} (x : Agree α) :
      (a : α), a x.car
      def Iris.Agree.dist {α : Type u} [OFE α] (n : Nat) (x y : Agree α) :
      Equations
      Instances For
        theorem Iris.Agree.dist_equiv {α : Type u} [OFE α] {n : Nat} :
        instance Iris.instOFEAgree {α : Type u} [OFE α] :
        OFE (Agree α)
        Equations
        theorem Iris.Agree.equiv_def {α : Type u} [OFE α] {x y : Agree α} :
        OFE.Equiv x y ∀ (n : Nat), dist n x y
        theorem Iris.Agree.dist_def {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
        OFE.Dist n x y dist n x y
        def Iris.Agree.validN {α : Type u} [OFE α] (n : Nat) (x : Agree α) :
        Equations
        Instances For
          theorem Iris.Agree.validN_iff {α : Type u} [OFE α] {n : Nat} {x : Agree α} :
          validN n x ∀ (a : α), a x.car∀ (b : α), b x.carOFE.Dist n a b
          def Iris.Agree.valid {α : Type u} [OFE α] (x : Agree α) :
          Equations
          Instances For
            def Iris.Agree.op {α : Type u} (x y : Agree α) :
            Equations
            Instances For
              theorem Iris.Agree.op_comm {α : Type u} [OFE α] {x y : Agree α} :
              OFE.Equiv (x.op y) (y.op x)
              theorem Iris.Agree.op_commN {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
              OFE.Dist n (x.op y) (y.op x)
              theorem Iris.Agree.op_assoc {α : Type u} [OFE α] {x y z : Agree α} :
              OFE.Equiv (x.op (y.op z)) ((x.op y).op z)
              theorem Iris.Agree.idemp {α : Type u} [OFE α] {x : Agree α} :
              OFE.Equiv (x.op x) x
              theorem Iris.Agree.validN_ne {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
              OFE.Dist n x yvalidN n xvalidN n y
              theorem Iris.Agree.op_ne {α : Type u} [OFE α] {x : Agree α} :
              theorem Iris.Agree.op_invN {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
              validN n (x.op y)OFE.Dist n x y
              theorem Iris.Agree.op_inv {α : Type u} [OFE α] {x y : Agree α} :
              (x.op y).validOFE.Equiv x y
              instance Iris.instCMRAAgree {α : Type u} [OFE α] :
              CMRA (Agree α)
              Equations
              • One or more equations did not get rendered due to their size.
              theorem Iris.Agree.op_def {α : Type u} [OFE α] {x y : Agree α} :
              x y = x.op y
              theorem Iris.Agree.validN_def {α : Type u} [OFE α] {n : Nat} {x : Agree α} :
              theorem Iris.Agree.valid_def {α : Type u} [OFE α] {x : Agree α} :
              theorem Iris.Agree.toAgree_injN {α : Type u} [OFE α] {n : Nat} {a b : α} :
              OFE.Dist n (toAgree a) (toAgree b)OFE.Dist n a b
              theorem Iris.Agree.toAgree_inj {α : Type u} [OFE α] {a b : α} :
              theorem Iris.Agree.toAgree_uninjN {α : Type u} [OFE α] {n : Nat} {x : Agree α} :
              ✓{n} x (a : α), OFE.Dist n (toAgree a) x
              theorem Iris.Agree.toAgree_uninj {α : Type u} [OFE α] {x : Agree α} :
              x (a : α), OFE.Equiv (toAgree a) x
              theorem Iris.Agree.includedN {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
              x ≼{n} y OFE.Dist n y (y x)
              theorem Iris.Agree.included {α : Type u} [OFE α] {x y : Agree α} :
              x y OFE.Equiv y (y x)
              theorem Iris.Agree.valid_includedN {α : Type u} [OFE α] {n : Nat} {x y : Agree α} :
              ✓{n} yx ≼{n} yOFE.Dist n x y
              theorem Iris.Agree.valid_included {α : Type u} [OFE α] {x y : Agree α} :
              yx yOFE.Equiv x y
              @[simp]
              theorem Iris.Agree.toAgree_includedN {α : Type u} [OFE α] {n : Nat} {a b : α} :
              @[simp]
              theorem Iris.Agree.toAgree_included {α : Type u} [OFE α] {a b : α} :
              @[simp]
              theorem Iris.Agree.toAgree_included_L {α : Type u} [OFE α] [OFE.Leibniz α] {a b : α} :
              instance Iris.instCancelableAgree {α : Type u} [OFE α] {x : Agree α} :
              theorem Iris.Agree.toAgree_op_validN_iff_dist {α : Type u} [OFE α] {n : Nat} {a b : α} :
              theorem Iris.toAgree_op_valid_iff_eq {α : Type u} [OFE α] {b : α} [OFE.Leibniz α] {a : α} :
              def Iris.Agree.map' {α : Type u_1} {β : Type u_2} (f : αβ) (a : Agree α) :
              Equations
              Instances For
                theorem Iris.instNonExpansiveAgreeMap' {α : Type u_1} {β : Type u_2} [OFE α] [OFE β] {f : αβ} [hne : OFE.NonExpansive f] :
                def Iris.Agree.map {α : Type u_1} {β : Type u_2} [OFE α] [OFE β] (f : αβ) [hne : OFE.NonExpansive f] :
                Equations
                Instances For
                  theorem Iris.Agree.agree_map_ext {α : Type u_1} {β : Type u_2} [OFE α] [OFE β] {f : αβ} [hne : OFE.NonExpansive f] {x : Agree α} {g : αβ} [OFE.NonExpansive g] (heq : ∀ (a : α), OFE.Equiv (f a) (g a)) :
                  OFE.Equiv ((map f).f x) ((map g).f x)